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A number of studies (cf. [i, 2]) have examined the flow of an incompressible viscous 
liquid around a rotating sphere, together with magnetohydrodynamic flow around a slowly 
rotating sphere [3, 4]. In [5, 6] turbulent flows were considered, arising in a conductive 
incompressible liquid under the influence of the electromagnetic field created by a variable 
dipole located within a nonconducting sphere. In [5] the dipole was located in the center 
of the sphere, while in [6] it was shifted away from the center, leading to motion of the 
sphere relative to the liquid at rest at infinity. The present study will consider the 
problem of slow flow of a conductive incompressible viscous liquid around a sphere contain- 
ing a rotating magnetic dipole. The liquid occupies all of an infinite space outside the 
sphere of radius a, as in [5, 6]. The problem will be solved for the case of small hydro- 
dynamic and magnetic Reynolds numbers. The solution contains two terms of the Stokes ex- 
pans ion. 

Let the local current distribution located in the center of the sphere create in a 
coordinate system fixed to the sphere the rotating magnetic moment 

m ---- m o (ey,  -~- iex , )  e x p  (~ . t ) .  

We assume that the frequency satisfies the quasistationary condition, i.e., Xa/c << i, where 
c is the speed of light. Assume that in the laboratory coordinate system the sphere ro- 
tates with an angular velocity ~er, and that ~a/c << i, so that the magnetic moment ro- 
tates with a frequency m = X -- ~: 

m = m0(ey q- iex) exp (i~t). (1) 

The v e c t o r  p o t e n t i a l  Am of  the  e l e c t r o m a g n e t i c  f i e l d  o f  t he  d i p o l e  o f  Eq. (1) has  the  f o l -  
l o w i n g  p r o j e c t i o n s  i n  a s p h e r i c a l  c o o r d i n a t e  s y s t e m  in  f r e e  s p a c e :  

mo {~io)t--io~ m 0 COS 0 e~) t_ i~  ~ 
A~r---~O, A,no =--~ A,n== -- i ~  (2) 

where  r ,  0, a a r e  the  c o o r d i n a t e s  of  t he  s p h e r i c a l  sy s t em.  

Le t  the  s p h e r e  be s u r r o u n d e d  by a l i q u i d  w i t h  c o n d u c t i v i t y  o and m a g n e t i c  and d i e l e c -  
t r i c  p e r m i t t i v i t i e s  e q u a l  to  u n i t y .  We w i l l  f i n d  the  e l e c t r o m a g n e t i c  f i e l d  d i s t r i b u t i o n .  
Le t  A be t he  e l e c t r o m a g n e t i c  f i e l d  v e c t o r  p o t e n t i a l .  Then the  c u r r e n t  d e n s i t y  in  the  
l i q u i d  

j = (r(E -}- v • B/c) = ~(--ir ~ v • rot A)/c. 

We make the following assumptions: 

Re : avo/'v << t, Hem --- 4~ovoa/c 2 << t, IE[ >> Iv • B[/c, (3) 

where a is the sphere radius; vo is the characteristic flow velocity; v is the kinematic 
viscosity of the liquid; Re and Rem are the hydrodynamic and magnetic Reynolds numbers. To 
satis~ the third assumption of Eq. (3) it is sufficient that ma ~ vo, m~ >> vo, where ~ = 
c/#2~o~ is the skin layer thickness in the liquid. 

We denote the regions within and outside the sphere by I and II, respectively. The A 
vector potential is defined by equations and boundary conditions 

A1 = Am ~- G, AG = 0, OA~/Ot = (c2/4~o)AA~, (4) 

OAla AOa~ OA10 OA20 ] 
Al=A21~=,2, or -- Or ,=a' Or = ~ l,'="' 
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where A~, A.  are the vector potentials in regions I and II; A,,~ and G are the vector poten- 
tial in I created respectively by magnetic dipole (i) and the currents in the liquid; A m 
is given by Eq. (2). The solution of Eq. (4) has the form 

G =: -~U l . -  I -Zi'--~o-~-) 7-1------+ (ireo + r cos O%) e ~ t - ' %  

. I + '  r - -  . . ~ 1  
3+mot  l /  i .... + ,d++) l---z ' ~ . , ( + ) {  t - - -  i ) /  1 - - +  -i- . . +r 

_ COSU e ~ )  ~ , Ao-- a-T~, V --7q--aH~-/2--~attt37=~---d--r. ~ ~, r (ice 

H(2)  _ (2)  w h e r e  3 / 2 ,  H5/2 a r e  H a n k e l  f u n c t i o n s .  

Upon a u n i t  l i q u i d  v o l u m e  t h e r e  a c t s  a f o r c e  f : :  j • B/c (B ---: rot AL h a v i n g  a s t a t i o n a r y  
component and a component oscillating at frequency 2m. The liquid flow will also have sta- 
tionary and oscillating components. In order that the maximum of the dimensionless non- 
stationary velocity be <<i, it is sufficient that 2mai/~ >> max(l, a2/~2), which is easily 
obtained from the linearized nonstationary Navier--Stokes equation. This condition can be 
rewritten in the form 4Re/Re m >> max(l, 6a/ai). As was noted in [5], for all conductive 
liquids, including electrolytes and liquid metals, Re/Re m >> i, so that it is sufficient 
to take ~ ~ a, in order that the contribution of the nonstationary flow be negligible. We 
will consider only stationary flows, described by the equations 

v v v  . . . .  Vp/p -t- vAv -~- f/p, d iv  v = O, (5 )  

where p is the pressure and O is the liquid density. The force component fa is composed 
of a stationary part 

<~ 

where fo is the characteristic value of the force acting on a unit volume of liquid. The 
expression in the inner parentheses of Eq. (6) is dimensionless, and r and ~ will be dimen- 
sionless here and below. 

From the symmetry of the problem it is evident that the total electromagnetic force 
acting on the entire liquid as a whole is equal to zero. The total moment of the electro- 
magnetic forces is not equal to zero, so that we take vI~=t=--0~0sin0ea, vIr+,~-+0, where 
mo = ~a/Vo. We rewrite Eq. (5) in dimensionless variables 

R e v v v  == - - v p + A v  -F T~,  d iv  v = 0, (7)  

i , - i  
where ~ = ~/z[ 6 ]/~ 5+ ----$-- sm0e=; T----foai/(pvv0) �9 We will seek a solution of Eq. (7) 

in the form v = v ~ q- |~ v L, p :_ p0 + llopl Considering Eq. (3), for v ~176 we obtain a sys- 
tem of equations and boundary conditions 

- -Vp  ~ + Av ~ + Trp = O, d iv  v ~ = O, V~ --= --~00 sin Oe~, v~  - + 0 .  

The solution of this system has the form 

o o o B ( r ) s i r t O ,  R(r)=rM(r~--M(l) /r2--c%/r  ~, (8)  pO _.-- 6011st + VO ~ Vr ~ O, V~ ==: 

M ( O  = - - M o ( 7  

Ms  = o~--~ a ((t + t .5& + (i.5~ + t.~a~) ~) " 

From t h e  s o l u t i o n  o b t a i n e d  i t  i s  e v i d e n t  t h a t  t h e  c h a r a c t e r i s t i c  v e l o c i t y  i s  t h e  v a l u e  vo -- 
( foa i / (p ,~ ) )62 / (4 ( (1  + 1 . 5 6 )  2 + ( 1 . 5 6  + 1 . 5 6 a ) 2 ) ) .  F o r  v t, p t  f r o m  Eq.  ( 7 ) ,  c o n s i d e r i n g  Eq.  
( 3 ) ,  we o b t a i n  t h e  s y s t e m  v~ v~ == - - V p  t + Av I, d iv  v t - 0, vz]r=j  = 0, V l l r ~  - + 0 ,  t h e  s o l u t i o n  
o f  w h i c h  h a s  t h e  f o r m  

l 1 v~=R,(r)  P~(cosO), v$=Ro(r)P~(cosO), vct~-O, (9)  
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t R l ( r )  r dR x 3c~  P~(Oos0) ~'~si~OcosO. 
~ 2 ( r )  = - - - ~  6 dr ' ID 2 (COS0) 2 ' 

We will not present the expression for p~. The integrals appearing in the expressions for 
R(r), R,(r), Ra(r) can be obtained numerically. We will only estimate these. Let ~ << i. 
We expand R(r), R:(r), R=(r) in asymptotic series. We will consider two variants of the 
problem. Let the sphere be rigidly held and unable to rotate. Then from Eqs. (8), (9) we 
ob rain 

R ( r ) :  r2 ra - f 6  r' r ~ 

80 5 5 eO.{1-r)/B)_!_63( 15 e~(,-O/8 1 5 )  
+ ( ~  2* \~ ,  2~:, -~ ~  

17 3 

(io) 

R l ( r ) =  ( i - -  2(~) ____4r ~-{- 2r a --4r 4 .:_ (~2 . 16r z ;' ra ~'~r4 

+ 8~ ( 29, t0 247 t : .{ ,_~ t o~(~-,v6~ _ o (~), 
\ ~ - - - ~ - - ~ -  32r---~-l- 2r---T ~' - -  32r---y ] 

Ro(r) = ( t -  2 8 ) ( t t r 3 .  1~r4) + 6 z l ' ~  - 3 i \  �9 487--~- t--- o~ 

48r ~t e,(1-~)/~)+ 8 3 ( _  375 q_ 96r a247 6r ~i ee{1-~)/~ {;J5 e~O-,-}.,~ 

_~.32r 83 e4(1-r)/8 ) -r' O (64). 

S i n c e  d R 1 / d r  l r =1 
mus t  b e  c a l c u l a t e d  to  o b t a i n  R ~ ( r )  t o  t h e  r e q u i r e d  a c c u r a c y ,  so  t h a t  t h e  e x p r e s s i o n  R ~ ( r )  
i n  Eq. (10)  l o s e s  i t s  mean ing  f o r  r -- 1 ~ 6. To c a l c u l a t e  R~( r )  f o r  r -- i ~ ~ we expand  
t h i s  f u n c t i o n  i n  Eq. (9)  i n  a T a y l o r  s e r i e s .  L e t  r = 1 + r ~ << 1. Fo r  ~o = 0 we o b t a i n  

R I(1 ~- 8) = (e ~ 8 3 t6 4 2:37 86 ~4 B7 - - ~ 8 - I - T - 8  - - -~ - eS - [  - t5 - - -3 - -  (11)  

+ 0 ( 8 8 ) ) (  ~ _ L 5 a - - 8 9 8 ' j  t9783 . 0(84)) 
- -  4 ' 4 t6 c - - T - - - t -  " 

We will analyze the solution obtained. The electromagnetic forces produce a rotating 
flow in the liquid about the z axis. The inertial forces developed in such a flow generate 
a secondary flow, obtained as the second term of the Stokes series. This secondary flow 
describes the adflux of liquid to the sphere in the polar regions (angle e ~ 55 ~ or 0 
125 ~ and the departure of liquid from the sphere in the equatorial region, The solution 
obtained can be compared to that of flow of a viscous incompressible liquid about a slowly 
rotating solid sphere. The first term of the Stokes expansion for such a problem is con- 
tained in Eq. (7). The following terms of the expansion can be written and it can be shown 
that the solution of the rotating sphere problem in the form of a Stokes series is equally 
applicable for all r. For r -- i >> 6 solution (i0) is similar to the solution of the rotat- 

= R:(1) = 0, the smaller r -- i, the more terms of the asymptotic series that 
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ing sphere problem, so that it remains applicable as r-~=, with following terms of the ex- 
pansion v n giving small additions to v ~ v ~ at all r. 

We will consider another variant of the problem: The sphere is not rigidly held and 
can rotate. From the currents induced in the liquid there acts on the magnetic dipole in- 
side the sphere a moment 

M_ = -- e, 7 ~(1-+-~) l 

The viscosity of ~he liquid produces a moment acting on the sphere 

+~- + - f  
oo M+ = e ,  aa 

The net moment acting on the sphere must be equal to zero. 
I 

Oo = 1 ~- 2 e~(1-t)/adtlt~. For  d << 1 f rom Eqs.  ( 8 ) ,  
oo 

From this condition we find that 

(9) we find 

2r a55~ -~ 15~--'-~a2r ~ -I- 0 (tic)) 
/ 

9 1. e~,(~-r)lt)) 

5) 

R ( r )  = e ' " -~ ) /6  --~ ~ 

/ t  ) 83(5 
R 1 (r) = 62 t i 6 r '  i~r  2' -~- , t6r 2 32r' 32r 8 

+ 84 ( s~ ~9 P2i -t-' t6~ 9 3 ~-4(*-')/6~] + 0 @), 

R~(r) = *~(. '  ' ) '  6'(3-~8 e'('-~)'~ 4 8 r  a 4 8 r  ~ e a ( 1 - r ) / 5  ~ -  

+ ~ 4 (  38r ~ 8r 93 e~(1-,)/~)_~_O(~5). 

(12) 

In analogy to Eq. (ii), we find for r = i + E, ~ << 1 

B, (1 + e) = e:~ + e 3 (R ~ (i) --  8~)/3 + e ~ (-- 5R 2 (l) + R (1) dR~dr  It=, + 32~)/6 + 0 (es), 
5 t5 ~ . 4035a r = -  ~ + W - - --~ 83 +-~-2 + o (85). 

We will compare Eqs. (!2) and (i0). In Eq. (i0) the function R(r) contains a term i/r a, 
which decreases slowly as r->~, and for large r the flow is similar to that about a rotating 
sphere [7], while in Eq. (12) the function R(r) decreases exponentially with increase in r, 
the flow is concentrated in a skin layer around the sphere, and differs significantly 
from the flow of [7]. Just as v ~ v I were obtained, the following terms v n of the Stokes 
series can be derived. Since for n~1 Vn]r=1 = 0 and v~Ne ~(I-r)/6, all following terms of 
the series v n will decrease as r-~= no slower than v ~ or v ~, so that the solution obtained 

will be applicable for large r also. 

To illustrate the flow in the meridional plane we introduce the flow function ~(r, e). 
We havtv~ = (i/(r2sin O))0~/00, ve = (--I/(rsin O)O~/Or. We choose ~ = 0.01. For the first variant 
(mo = O) graphs of the functions R(r), --40R,(r), and 100R2(r) are shown in Fig. i (curves 
1-3, respectively). Figure 2 shows isolines 100~(r, 0) in the upper hemisphere (a = const). 
The flow in the lower hemisphere is symmetric about the axis 0 = ~/2. For the second 
variant (mo ~ 0) curves of R(r) are shown in Fig. 3, while the functions --106R,(r) and 
106R2(r) are presented in Fig. 4 (curves i, 2 respectively). In Fig. 5 the isolines 
106~(r, 8) in the upper hemisphere (~ = const) are shown. 

In this problem, as in [6], the condition Re << i at 6 << i is equivalent to the condi- 

tion of smallness of the magnetic field Bo = mo/aa: 

i ~  pv ~ ~ j  << 1. 

The author expresses his deep gratitude to V. I. Yakovlev for formulation of the prob- 
lem and evaluation of the results, to V. I. Khonichev for his evaluation, and to B. G. 

Kuznetsov for his critical remarks. 
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HIGHLY INDUCTIVE EXPLOSIVE-MAGNETIC GENERATORS WITH HIGH ENERGY 

GAIN FACTOR 

V. A. Demidov, E. I. Zharinov, 
S. A. Kazakov, and V. K. Chernyshev 

UDC 621.37.373 

Spiral explosive-magnetic generators (EMG) are sources of powerful electromagnetic 
energy pulses [1-3]. One of the most important characteristics governing the practical re- 
alization of the spirals is the magnitude of the energygain factor (KE). The dimensions 
of the primary energy source depend directly on the amplifying capabilities of the EMG. 
Since the specific energy assured by explosive current generators is approximately three 
orders of magnitude higher than the specific energy of condenser apparatus ordinarily used 
to power an EMG, the volume of the initial energy source approaches the EMG volume only if 
the generator energy gain factor reaches %10 s. 

Two possibilities exist for raising the K E of explosive-magnetic units. One is to pro- 
duce cascade systems that are several EMG connected by using couplers (air transformers) and 
operating in succession [1-4]. In this case the energy gain factor of the whole system 
equals the product of the K E of each EMG and can reach an arbitrarily high value. However, 
cascade generators are complex and costly units. Moreover, the presence of couplers con- 
siderably increases the size and weight of the system (e.g., the dimensions of an air trans- 
former are commensurate with the dimensions of the EMG itself)~ Another possibility for ob- 
taining high values of K E is to increase the ratio ~ = Lo/Lf (here Lo in the initial in- 
ductance of the EMG, and Lf is the load inductance) by raising Lo. Construction of the 
generator is not complicated in practice here. This paper is devoted to namely spirals with 
high initial inductance. 

i. Electrical Field during Operation of Highly Inductive Spirals 

As is known, electrical fields capable of resulting in the origination of breakdowns and 
energy reduction in the load are developed in the volume of generators because of the high 
rate of magnetic field growth with rapid compression of the magnetic flux. In the limit 
case, the maximal stress in spiral generators tends to the quantity LdI/dt ----- idL/dt = 
(~/L)dL/dt, where L is the inductance, I is the current, and ~ is the magnetic flux. Es- 
pecially high voltages are developed in highly inductive spirals since they are powered by 
a high magnetic flux (for a given flux in the load, the magnitude of the initial flux ~o 
should be the higher, the greater the ratio Lo/Lf). Depending on the initial energy, the 
law of inductance variation, and the size of the system, voltages in an EMG can reach tens 
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